Follow up for N-Queens problem.
Now, instead outputting board configurations, return the total number of distinct solutions.
DFS
1 class Solution { 2 private: 3 int ret; 4 int a[100]; 5 bool canUse[100]; 6 public: 7 bool check(int y, int n) 8 { 9 for(int i = 0; i < n; i++)10 if (abs(i - n) == abs(y - a[i]))11 return false;12 return true;13 }14 15 void solve(int dep, int maxDep)16 {17 if (dep == maxDep)18 {19 ret++; 20 return;21 }22 23 for(int i = 0; i < maxDep; i++)24 if (canUse[i] && check(i, dep))25 {26 canUse[i] = false;27 a[dep] = i;28 solve(dep + 1, maxDep);29 canUse[i] = true; 30 }31 }32 33 int totalNQueens(int n) {34 // Start typing your C/C++ solution below35 // DO NOT write int main() function36 ret = 0;37 memset(canUse, true, sizeof(canUse));38 solve(0, n);39 return ret;40 }41 };